

Catalysis Today 42 (1998) 37-44



# Study of nitric oxide reduction over silver/alumina catalysts under lean conditions: Effects of reaction conditions and support

# Hung-Wen Jen

Chemical Engineering Department, Ford Research Laboratory, MD 3179/SRL, PO Box 2053, Dearborn, MI 48121, USA

#### Abstract

The reduction of NO over silver/alumina catalysts was studied in a flow reactor system at W/F (catalyst weight/total flow)=0.024–0.012 g/(ml/s). Silver/alumina was shown to catalyze the reduction of NO by propylene or propylene/propane mixture in excess oxygen. The catalytic activity was attributed to the hydrocarbon-oxidation reactivity of a silver catalyst. The activity for NO-reduction increased as the oxygen-content in reaction mixture increased from 1.5% to 10%. This effect of oxygen-content and the temperature range around 500°C for the reduction of NO can be correlated to the activity of hydrocarbon-oxidation. The presence of water and sulfur dioxide had adverse effect on the reduction of NO. The adverse effect could be partially compensated by the enhancement of activity using a proper type of alumina. The type of alumina used had a great effect on the activity of NO-reduction for a silver/alumina catalyst. Preliminary characterization showed that the average pore size and the pore-size distribution of the alumina could be important factors. An active silver/alumina catalyst was prepared with a higher NO-conversion than the best Cu/ZSM5-based catalyst evaluated at Ford under the same reaction conditions in the presence of  $H_2O$  and  $SO_2$ . © 1998 Elsevier Science B.V. All rights reserved.

Keywords: NO<sub>x</sub> reduction; Automotive catalysts; Silver/alumina; Pore-size distribution

# 1. Introduction

Development of a catalyst that can efficiently catalyze the reduction of  $NO_x$  in automotive exhaust with excess oxygen (lean- $NO_x$  reduction) is a prerequisite for the application of lean-burn engine technology to vehicles. Cu/ZSM5 or other zeolite-based materials [1,2] were first shown to have good activities for  $NO_x$  reduction by hydrocarbons in excess oxygen. However, the Cu/ZSM5-based catalysts at normal exhaust temperature are vulnerable to deactivation by steam that is present in any automotive exhaust [3–5].

One alternative to the zeolite-based catalysts is to make non-zeolite based catalysts with good activities and durability for lean- $NO_x$  reduction. Alumina is

widely used as support in current automotive catalysts and is naturally the first choice as a support. There are reports about the activity of lean- $NO_x$  reduction over alumina-only catalysts [6–8], but the activity tested at Ford under the conditions close to real automobile exhaust was relatively low and this was also reported by Iwamoto and Mizuno [9].

In an earlier report [10], the reactivities of lean- $NO_x$  reduction for Pd-, Cu-, and Au-containing catalysts were correlated to the hydrocarbon-oxidation activities of the catalysts. The observed results can be explained by a proposed reaction scheme in which  $NO_x$  is reduced by reacting with intermediates generated from partial oxidation of hydrocarbons used as reductants. If the hydrocarbon-oxidation activity on a

catalyst is very high, the complete oxidation diminishes the formation of intermediates from partial oxidation and results in low activity of lean-NO<sub>x</sub> reduction. If the oxidation activity is too low, the generation of the intermediates is slow and the rate of NO<sub>x</sub>-reduction becomes low. The reaction scheme implies that a catalyst with an intermediate activity for hydrocarbon-oxidation may have relatively good activity for lean-NO<sub>x</sub> reduction. It was shown that Cu-containing alumina [10] had better efficiency of lean-NO<sub>x</sub> reduction than Pd-, or Au-containing catalyst and the hydrocarbon-oxidation activity of the Cucatalyst was between those of the Pd- and Au-catalysts. One other Cu-catalyst, Cu/ZSM5, has been known to have good activity of lean-NO<sub>x</sub> reduction. The hydrocarbon-oxidation activity of a silver-containing catalyst is expected to be between those of Cuand Au-containing catalysts. A silver catalyst may potentially have a good activity for lean-NO<sub>x</sub> reduction. Therefore, alumina-supported silver catalysts were chosen for study.

During the course of this study, silver-containing alumina was first reported by Miyedera [11,12] and then by others [13,14] to catalyze the reduction of NO by C<sub>3</sub>H<sub>6</sub>, alcohols, and ethers. Some of the reports [11,12] used much lower space velocities than normally encountered in automotive exhaust, while another used a 3-fold higher space velocity [13] than normal. To date, there has been no fundamental explanation for the effectiveness of Ag/alumina, no investigation on the effect of O2-concentration, and no study of support effect on the activity. The work presented here describes how earlier study at Ford led to the selection of Ag/alumina, and how that study has been extended to show the effect of reaction conditions and properties of the alumina support. A catalyst of Ag/alumina was prepared which has higher NO<sub>x</sub>-conversion than the best Cu/ZSM5 catalyst evaluated at Ford under the same reaction conditions.

# 2. Experimental

In this study, alumina-supported silver catalyst was prepared by the wet-incipient technique of impregnating AgNO<sub>3</sub> (ACS Grade) solution onto alumina powder. The size of these alumina ranged from 80 to 300 meshes. The particle size had little effect on the

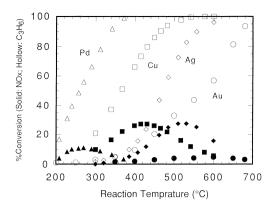
activity of the resulted  $Ag/Al_2O_3$  catalysts. The impregnated sample was then dried at  $120^{\circ}C$  and calcined in air at  $550^{\circ}C$  for 4 h. The BET surface area and the pore-size distribution of each alumina after calcination at  $600^{\circ}C$  were determined using a  $N_2$ -adsorption technique (Micromeretics ASAP 2400). The effect of the support was investigated using five samples of alumina from different commercial sources. The phases of alumina samples used in this study were determined from XRD. Since 2 wt% loading of Ag resulted in the best activity of lean- $NO_x$  reduction for each  $Ag/Al_2O_3$  catalyst studied, all the activities reported in this paper are for 2 wt%  $Ag/Al_2O_3$ . This observed effect of Ag-loading agrees with that reported in [11].

The reduction of NO was studied in a typical flow reactor at W/F=0.025-0.012 g/(ml/s). The catalyst powders were packed inside a quartz reactor heated with a furnace. The mixture of reaction gases contained 1.5-10% O<sub>2</sub>, 500-1500 ppm C<sub>3</sub>H<sub>6</sub> or C3-mixture  $(C_3H_6/C_3H_8=2)$ , 500–1000 ppm NO, and helium or nitrogen as balance. 18 ppm SO<sub>2</sub> and 9% H<sub>2</sub>O could be added, if necessary. The concentrations of NO and hydrocarbon in the effluent were monitored using commercial chemiluminescence and flame-ionization analyzers, respectively. A gas chromatograph with TCD could also be used to analyze the concentrations of N<sub>2</sub>, CO, CO<sub>2</sub>, and C3-mixture with two columns: 5 ft $\times$ 1/8 in. Haysep T and 6 ft $\times$ 1/8 in. molecular sieve 5A. The Haysep T column served as a pre-column and the flow was reversed after the light gas molecules evolved. When the gas chromatograph was used, the conversion of NO to N<sub>2</sub> was measured isothermally. If only gas analyzers were used, the disappearance of NO<sub>x</sub> (NO+NO<sub>2</sub>) was measured either isothermally or by ramping at a rate of 10°C/min. The conversion of NO to NO<sub>2</sub> or N<sub>2</sub>O was not particularly monitored. The yield of N<sub>2</sub> measured by GC excluded the conversion to NO<sub>2</sub> or N<sub>2</sub>O. The conversion of NO to NO<sub>2</sub> was not counted in this report.

### 3. Results and discussion

# 3.1. Effect of reaction conditions

The conversions of  $NO_x$  and  $C_3H_6$  for 2%  $Ag/Al_2O_3$  (Degussa C  $Al_2O_3$ , 97 m<sup>2</sup>/g surface area) are shown in



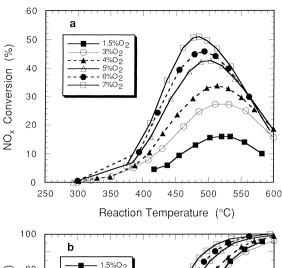


Fig. 1. Conversions of  $NO_x$  and  $C_3H_6$  over 5.4% Pd/ZSM-5, 2%  $Cu/Al_2O_3$ , 2%  $Ag/Al_2O_3$ , and 2%  $Au/Al_2O_3$ . 1 g catalyst except 0.6 g Pd/ZSM-5. Feed: 500 ppm NO, 500 ppm  $C_3H_6$ , 3%  $O_2$ ,  $N_2$  balance, 3 l/min total flow.

Fig. 1. The activities for the Pd-, Cu-, and Au-catalysts from [1] are also compared in Fig. 1. All the activities were measured under the same reaction conditions. The conversion of  $NO_x$  or  $C_3H_6$  for the Ag-catalyst occurred at temperatures between those for the Cu-and Au-catalysts. The value of maximum conversion for the Ag-catalyst was close to that for the Cu/Al<sub>2</sub>O<sub>3</sub> catalyst. For a given Ag/Al<sub>2</sub>O<sub>3</sub> catalyst, the conversion of  $NO_x$  increased and shifted toward lower temperature range as the concentration of oxygen in the reaction mixture increased from 1.5% to 7% (Fig. 2(a)). The conversion of  $C_3H_6$  also shifted toward lower temperature range (Fig. 2(b)).

The above reactions were carried out in a flow system with the maximum  $O_2$ -concentration at 7% due to the limitation of flow controllers. The conversions of  $NO_x$  and  $C_3H_6$  were also measured in a different flow reactor system with an extended range of  $O_2$ -concentration. The results for the same  $Ag/Al_2O_3$  catalyst at 3%, 6%, and 10%  $O_2$  are compared in Fig. 3. The %conversion of NO was determined from the yield of  $N_2$  whose amount was measured by GC:

 $(2 \times N_2$ -concentration)/(NO<sub>x</sub>-concentration at inlet)  $\times 100\%$ .

Again, the conversion of NO increased with  $O_2$ -concentration. In a separate experiment the conversion of  $NO_x$  was simultaneously measured using a chemiluminescence  $NO_x$ -analyzer and a GC. The result



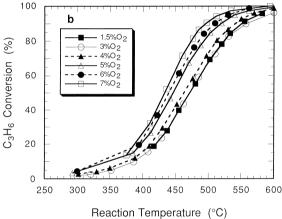



Fig. 2. Effect of  $P(O_2)$  on the conversion of (a)  $NO_x$  and (b)  $C_3H_6$  over 1 g 2%  $Ag/Al_2O_3$ . Feed: 500 ppm No, 500 ppm  $C_3H_6$ ,  $N_2$  balance, 3 l/min total flow.

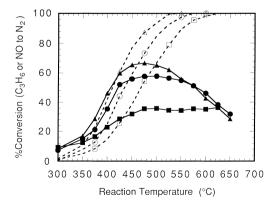



Fig. 3. Effect of  $P(O_2)$  on the conversion of  $NO_x$  to  $N_2$  (solid line) along with the conversion of  $C_3H_6$  (dotted line) over 0.2 g 2% Ag/  $Al_2O_3$ : ( $\blacksquare$ ,  $\square$ ) 3%  $O_2$ , ( $\bullet$ ,  $\bigcirc$ ) 6%  $O_2$ , ( $\bullet$ ,  $\triangle$ ) 10%  $O_2$ . Feed: 1000 ppm NO, 1500 ppm  $C_3H_6$ , He balance, 500 ml/min total flow.

showed that majority of NO was converted to  $N_2$  over the Ag/Al<sub>2</sub>O<sub>3</sub> catalysts, in agreement with the result by Aoyama et al. [14].

The temperature range of  $NO_x$  conversion and the effect of O<sub>2</sub>-concentration on the reactivity for the Ag/ Al<sub>2</sub>O<sub>3</sub> catalyst can be explained according to the proposed reaction scheme in [1]. The partial oxidation of the hydrocarbon initiates the lean-NO<sub>x</sub> reduction and the complete oxidation at high temperatures lowers the concentration of the partially oxidized intermediates and, hence, the rate of the NO<sub>x</sub>-reduction. Therefore, the temperature range for lean- $NO_x$  reduction is closely related to that for C<sub>3</sub>H<sub>6</sub>-oxidation as shown in Fig. 1. Fig. 1 also shows that the Ag- or Cucatalyst with intermediate temperature range for hydrocarbon-oxidation has relatively better NO<sub>x</sub>-conversion than either Pd- or Au-catalyst. This observation agrees with the expectation in Section 1 that the catalyst with an intermediate activity of hydrocarbonoxidation has a relatively good activity of NO<sub>x</sub>-reduction in excess oxygen.

For the Ag/Al<sub>2</sub>O<sub>3</sub> catalysts, the activity of lean-NO<sub>x</sub> reduction increased as O2-concentration increased from 1.5% to 10%. In contrast, the NO<sub>x</sub>-conversion for 2% Cu/Al<sub>2</sub>O<sub>3</sub> at 482°C peaked at 0.25% O<sub>2</sub> [10] and the NO<sub>x</sub>-conversion for Cu/ZSM5 at 300°C peaked at 1.5% O<sub>2</sub> [9]. The difference in the effects of O<sub>2</sub>-concentration can be attributed to the difference in the activities of hydrocarbon-oxidation. For the Cucatalyst, only a small amount of O2 is needed to initiate the partial oxidation of hydrocarbon for the reduction of NO<sub>x</sub>. Thus, high levels of O<sub>2</sub> may result in the enhancement of complete oxidation of hydrocarbon, thereby decreasing the concentration of reactive intermediates and the rate of NO<sub>x</sub>-reduction. Since the Ag/Al<sub>2</sub>O<sub>3</sub> catalyst has lower hydrocarbon-oxidation activity than a Cu-catalyst, increasing the O2-concentration may promote the rate for partial oxidation of hydrocarbon more than total oxidation. Thus, the catalytic activity of hydrocarbon-oxidation for a given catalyst is reflected in the effect of O<sub>2</sub>-concentration on the activity of lean- $NO_x$  reduction.

The conversion of  $NO_x$  increased as the concentration of the reductant,  $C_3H_6$ , increased (Fig. 4). In addition, the temperature range for lean- $NO_x$  reduction or  $C_3H_6$ -oxidation was widened. The result indicates that high concentration of reductant is beneficial to the reduction of  $NO_x$ . The reduction of  $NO_x$ 

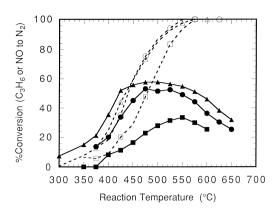



Fig. 4. Effect of  $P(C_3H_6)$  on the conversion of  $NO_x$  (solid line) and  $C_3H_6$  (dotted line) over 0.2 g 2% Ag/Al<sub>2</sub>O<sub>3</sub>: ( $\blacksquare$ ,  $\square$ ) 500 ppm  $C_3H_6$ , ( $\bullet$ ,  $\bigcirc$ ) 1000 ppm  $C_3H_6$ , ( $\bullet$ ,  $\triangle$ ) 1500 ppm  $C_3H_6$ . Feed: 1000 ppm NO, 6% O<sub>2</sub>, He balance, 500 ml/min total flow.

increased as expected as the total flow rate decreased (Fig. 5). This implies that the lean- $NO_x$  efficiency on a  $Ag/Al_2O_3$  catalyst can be raised by decreasing the space velocity. For all the results in Fig. 4 or Fig. 5, the temperature ranges for lean- $NO_x$  reduction are closely related to those for  $C_3H_6$ -oxidation.

The  $O_2$ -concentration is about 10% in the exhaust of a typical internal combustion engine operating at A/F=26 which may be a reasonable value for a future lean-burn engine. Thus, the high conversion of  $NO_x$  at 10%  $O_2$  for the Ag/Al<sub>2</sub>O<sub>3</sub> catalyst enhances the possibility of Ag/Al<sub>2</sub>O<sub>3</sub> being a practical lean- $NO_x$  catalyst. However, the  $NO_x$ -conversion of this parti-

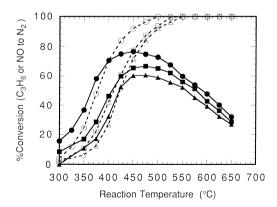



Fig. 5. Effect of total flow on the conversion of  $NO_x$  (solid line) and  $C_3H_6$  (dotted line) over 0.2 g 2% Ag/Al $_2O_3$ : ( $\spadesuit$ ,  $\bigcirc$ ) 250 ml/min flow,  $C_3H_6$ , ( $\blacksquare$ ,  $\square$ ) 500 ml/min flow, ( $\spadesuit$ ,  $\triangle$ ) 1000 ml/min flow. Feed: 1000 ppm NO, 1500 ppm  $C_3H_6$ , 10%  $O_2$ , He balance.

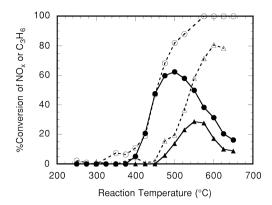



Fig. 6. Effect of  $H_2O$  and  $SO_2$  on the conversion of  $NO_x$  (solid line) and C3-mixture (dotted line) over 0.2 g 2% Ag/Al<sub>2</sub>O<sub>3</sub>; ( $\spadesuit$ ,  $\bigcirc$ ) 0%  $H_2O+0$  ppm  $SO_2$ , ( $\spadesuit$ ,  $\triangle$ ) 9%  $H_2O+18$  ppm  $SO_2$ . Feed: 1000 ppm NO, 950 ppm  $C_3H_6$ , 520 ppm  $C_3H_8$ , 10%  $O_2$ , He balance, 500 ml/min total flow.

cular Ag/Al<sub>2</sub>O<sub>3</sub> catalyst was severely decreased from 62% to 28% by the addition of 9% H<sub>2</sub>O and 18 ppm SO<sub>2</sub> (Fig. 6). In addition, the conversion curves for both NO<sub>x</sub> and hydrocarbon shifted to higher temperature range. Because H<sub>2</sub>O is always present in automobile exhaust and the gasoline in North America still contains significant amount of sulfur, the Ag/Al<sub>2</sub>O<sub>3</sub> catalyst will always be exposed to H<sub>2</sub>O and SO<sub>2</sub> in the exhaust. The effect of these two inhibitors may be compensated by improving the overall activity of a Ag-catalyst, and enhancement in activity resulting from modifications to the alumina support is described below.

#### 3.2. Effect of support

The XRD patterns for the five samples of alumina after 600°C-calcination in air showed that Al<sub>2</sub>O<sub>3</sub>-1

to -4 were  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> and Al<sub>2</sub>O<sub>3</sub>-5 was mainly  $\delta$ -Al<sub>2</sub>O<sub>3</sub>. Al<sub>2</sub>O<sub>3</sub>-3 has broader XRD-lines than the other  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>, indicating smaller particle size or less crystalline structure. The XRD data agree with the result of surface area measurement (Table 1) in which Al<sub>2</sub>O<sub>3</sub>-3 has the largest surface area among all the five samples of Al<sub>2</sub>O<sub>3</sub>. Nominally, the support is Al<sub>2</sub>O<sub>3</sub> except that Al<sub>2</sub>O<sub>3</sub>-4 contains 4 wt% La. The pore-size distributions of the supports are shown in Fig. 7. The value for "% of pore in most populated 50 Å range" in Table 1 was the percentage of pore volumes in a range of 50 Å centered at the pore size corresponding to the maximum in the dV/d log(D) plot of Fig. 7. The larger the value, the narrower the distribution.

As shown in Table 1, the NO<sub>x</sub> efficiency for Ag/ Al<sub>2</sub>O<sub>3</sub> varies significantly with the type of Al<sub>2</sub>O<sub>3</sub> support used. Al<sub>2</sub>O<sub>3</sub>-1 and Al<sub>2</sub>O<sub>3</sub>-2 have the largest fractions of pores in the 15–100 Å range as well as the largest fractions in the most populated 50 Å range. 2% Ag/Al<sub>2</sub>O<sub>3</sub>-1 and 2% Ag/Al<sub>2</sub>O<sub>3</sub>-2 also had better NO<sub>x</sub>efficiency than the other Ag/Al<sub>2</sub>O<sub>3</sub> catalysts. For Al<sub>2</sub>O<sub>3</sub>-1 to -4, there is apparently a correlation between the NO<sub>x</sub>-efficiency and the pore-size distribution or the range of pore size. The greater the fraction of pore volumes in the range 15-100 Å or the narrower the pore-size distribution, the larger the NO<sub>x</sub>-conversion for the 2% Ag/Al<sub>2</sub>O<sub>3</sub> catalyst. Comparison of the results for Al<sub>2</sub>O<sub>3</sub>-3 and Al<sub>2</sub>O<sub>3</sub>-5 reveals that the higher percentage of pores in the range between 15 and 100 Å results in significantly larger NO<sub>x</sub>-conversion at similar pore-size distribution. The comparison for Al<sub>2</sub>O<sub>3</sub>-4 and Al<sub>2</sub>O<sub>3</sub>-5 indicates that the narrowness of pore-size distribution probably has a larger effect on NO<sub>x</sub>-efficiency than the fraction of pores in the 15–100 Å range. Al<sub>2</sub>O<sub>3</sub>-3 has the largest surface area but not the best NO<sub>x</sub>-efficiency. Surface

Table 1 Properties of alumina used and No<sub>x</sub>-conversion of Ag/Al<sub>2</sub>O<sub>3</sub>

| Al <sub>2</sub> O <sub>3</sub> -1 | Al <sub>2</sub> O <sub>3</sub> -2               | Al <sub>2</sub> O <sub>3</sub> -3                                                                                                                       | Al <sub>2</sub> O <sub>3</sub> -4                    | Al <sub>2</sub> O <sub>3</sub> -5                     |
|-----------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|
| γ-Al <sub>2</sub> O <sub>3</sub>  | γ-Al <sub>2</sub> O <sub>3</sub>                | γ-Al <sub>2</sub> O <sub>3</sub>                                                                                                                        | γ-Al <sub>2</sub> O <sub>3</sub> (4 wt% La)          | $\delta$ -Al <sub>2</sub> O <sub>3</sub>              |
| 226                               | 182                                             | 275                                                                                                                                                     | 192                                                  | 92                                                    |
| 64                                | 71                                              | 55                                                                                                                                                      | 133                                                  | 219                                                   |
| 98%                               | 97%                                             | 67%                                                                                                                                                     | 15%                                                  | 3%                                                    |
| 95%                               | 88%                                             | 59%                                                                                                                                                     | 42%                                                  | 63%                                                   |
| 85%                               | 85%                                             | 68%                                                                                                                                                     | 42%                                                  | 59%                                                   |
|                                   | γ-Al <sub>2</sub> O <sub>3</sub> 226 64 98% 95% | $\begin{array}{cccc} \gamma - \text{Al}_2\text{O}_3 & \gamma - \text{Al}_2\text{O}_3 \\ 226 & 182 \\ 64 & 71 \\ 98\% & 97\% \\ 95\% & 88\% \end{array}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

 $<sup>^{</sup>a}0.2~g~2\%~Ag/Al_{2}O_{3};~Feed:~500~ml/min,~10\%~O_{2},~550~ppm~NO,~1100~ppm~C3,~10\%~H_{2}O,~18~ppm~SO_{2},~He~balance.$ 

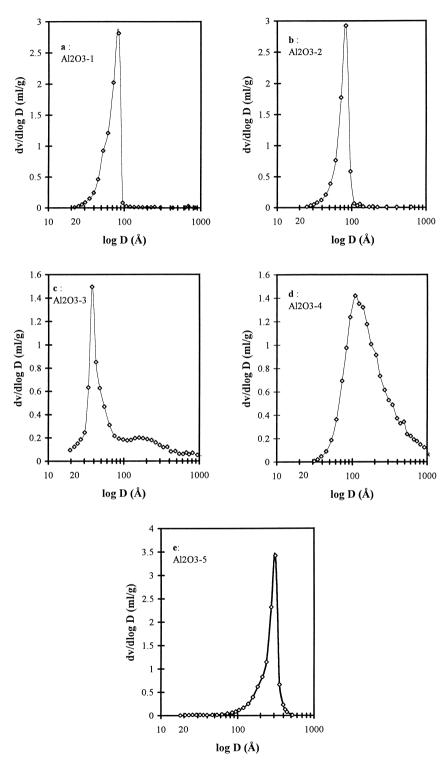



Fig. 7. Pore-distribution,  $dV/d \log D$ , measured from the desorption of  $N_2$  at liquid nitrogen temperature for five samples of  $Al_2O_3$  from different commercial sources. V=pore volumes in ml/g, D=pore size in Å.

area appears not to be as important as narrowness of pore-size distribution.

Al<sub>2</sub>O<sub>3</sub>-4 contains 4 wt% La and is a type of stabilized Al<sub>2</sub>O<sub>3</sub> support commonly used in automotive catalysts. The presence of 4 wt% La may affect the activity for 2% Ag/Al<sub>2</sub>O<sub>3</sub>-4 in addition to the distribution or the size of pores discussed above. Whether La has any effect on the NO<sub>x</sub>-efficiency is not known at present and needs further study. Al<sub>2</sub>O<sub>3</sub>-5 contains mostly  $\delta$  Al<sub>2</sub>O<sub>3</sub> which may exert different effect from  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> on the reactivity of Ag/Al<sub>2</sub>O<sub>3</sub>. It has been proposed that the size and the valence state of Agspecies have great effect on the lean-NO<sub>x</sub> activity of Ag/Al<sub>2</sub>O<sub>3</sub> [14,15]. The influence of various Al<sub>2</sub>O<sub>3</sub>-samples on the nature of the Ag-species may have important role in determining the activity.

However, it is not clear that the size and the valence state of Ag can be much different from one another for 2% Ag/Al<sub>2</sub>O<sub>3</sub>-1 to -4 based on the values of surface area and the result of XRD. The only apparent correlation in Table 1 indicates that narrower distribution and smaller size of the pores result in better NO<sub>x</sub>efficiency for 2% Ag/( $\gamma$ -Al<sub>2</sub>O<sub>3</sub>). Additional work is needed to further characterize the pore-size effect on lean-NO<sub>x</sub> activity. One possible explanation is that some important steps of NO<sub>x</sub>-reduction occur on or near the surface of Al<sub>2</sub>O<sub>3</sub>. The small pore and the uniformity of the size facilitate these steps by confining the reaction intermediates inside the pore and close to the surface of Al<sub>2</sub>O<sub>3</sub>. Lean-NO<sub>x</sub> reduction was observed at Ford in an empty tube and on Al<sub>2</sub>O<sub>3</sub> powders depending on temperature and residence time. Others also reported the reaction over Al<sub>2</sub>O<sub>3</sub> [6–9]. A recent paper [15] showed that the activity of NO<sub>x</sub>-reduction was enhanced by placing Al<sub>2</sub>O<sub>3</sub> powders above or below Ag/Al<sub>2</sub>O<sub>3</sub> powders, or by mixing the Al<sub>2</sub>O<sub>3</sub> and the Ag/Al<sub>2</sub>O<sub>3</sub> powders. The mixing generated a greater enhancement. Those authors propose that the increase in the boundary between the two powders increases the overall activity. This observation indicates that the cross-boundary process of some intermediates to the vicinity of Al<sub>2</sub>O<sub>3</sub> surface can enhance the NO<sub>x</sub>-reduction. In a uniform pore with a small diameter containing 2% Ag, the same process is confined in a small space and may proceed efficiently. The nature of pores may be one important factor for the Al<sub>2</sub>O<sub>3</sub> support on the lean-NO<sub>x</sub> reduction over Ag/Al<sub>2</sub>O<sub>3</sub> in addition to the influence on the

nature of Ag-species. Based on the correlation established above, it appears that the best  $Ag/Al_2O_3$  catalyst for lean- $NO_x$  reduction may come from a zeolite-like  $Al_2O_3$  containing one type of small pores.

# 3.3. Ag/alumina vs. Cu/ZSM5

No previous studies were found directly comparing the NO<sub>x</sub>-conversion for a Ag/Al<sub>2</sub>O<sub>3</sub> catalyst to that for a Cu/ZSM5 catalyst under same reaction conditions. In this study, the activity for the best Ag/Al<sub>2</sub>O<sub>3</sub> catalyst was compared to that for the best Cu/ ZSM5-based catalyst evaluated at Ford. To minimize packing difference between the two catalyst powders, each catalyst was pelletized into thin wafers of 0.05 g per wafer. The thin wafers were then broken into pieces to be loaded into a U-shaped quartz reactor. The NO<sub>x</sub>-conversion for 0.1 g of each catalyst was measured at a total flow of 500 ml/min, equivalent to 50 000 h<sup>-1</sup> space velocity for a typical monolith catalyst on a car. Fig. 8 shows 63% NO<sub>x</sub>-conversion at 525°C for 2% Ag/Al<sub>2</sub>O<sub>3</sub>-1 in 10% O<sub>2</sub> vs. 42% (in 5% O<sub>2</sub>) for a LaCu/ZSM-5 catalyst prepared in this laboratory [16]. The NO<sub>x</sub>-conversion for the zeolite catalyst would be expected to be even lower if 10% O<sub>2</sub> was used. The Ag/Al<sub>2</sub>O<sub>3</sub> catalyst had higher NO<sub>x</sub>conversion between 480°C and 600°C than the LaCu/ ZSM-5 catalyst, but had a narrower range of operating temperature (Fig. 8). In addition, the NO<sub>x</sub>-reduction occurred at higher temperature for the Ag/Al<sub>2</sub>O<sub>3</sub>

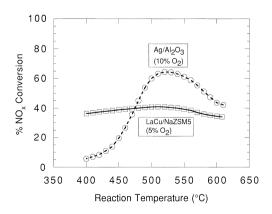



Fig. 8.  $NO_x$ -conversion over 0.1 g of ( $\bigcirc$ ) 2% Ag/Al2O3-1 in 10%  $O_2$ , ( $\square$ )  $La_{0.14}Cu_{2.68}Na_{0.68}Al_{4.02}Si_{91.98}O_{192}$  in 5%  $O_2$ . Feed: 500 ppm NO, 1200 C3-mixture ( $C_3H_6/C_3H_8=2$ ), 9%  $H_2O$ , 18 ppm  $SO_2$ , He balance, 500 ml/min total flow.

catalyst. For practical purpose, the operating window for Ag/Al<sub>2</sub>O<sub>3</sub> needs to be widened to lower temperature range to produce an attractive catalyst for leanburn vehicles.

#### 4. Conclusions

- 1. Under simulated exhaust conditions,  $Ag/Al_2O_3$  showed a good activity for lean- $NO_x$  reduction. The activity increased as the  $O_2$ -concentration increased from 1.5% to 10%. The reactivity of the Ag-catalyst for the  $NO_x$ -reduction was closely related to the activity for hydrocarbon-oxidation.
- 2. The activity of a  $Ag/Al_2O_3$  catalyst increased as the concentration of hydrocarbon increased and the space velocity of the gas mixture decreased.  $H_2O$  and  $SO_2$  poisoned the activity of a  $Ag/Al_2O_3$  catalyst for lean- $NO_x$  reduction.
- 3. The type of alumina had great effect on the activity of lean- $NO_x$  reduction for  $Ag/Al_2O_3$  catalysts.  $\gamma$ - $Al_2O_3$  with narrower pore-size distribution and smaller pore size resulted in better activity for lean- $NO_x$  reduction.
- 4. A catalyst of 2 wt%Ag/γ-Al<sub>2</sub>O<sub>3</sub> has higher NO<sub>x</sub>-conversion than the best Cu/ZSM5-based catalyst evaluated at Ford under the same reaction conditions (except O<sub>2</sub>-concentration). The Ag-catalyst had a narrower and higher window of operating temperatures for lean-NO<sub>x</sub> reduction.

# Acknowledgements

Discussions with Jeff Hepburn, Cliff Montreuil, Haren Gandhi, Chaitanya Narula, and Robert McCabe during the course of the work are deeply appreciated. Robert McCabe also suggests many critical corrections for the paper. George Graham provided the XRD result. Felicia Ivascu provided assistance as a summer intern at Ford

#### References

- [1] M. Iwamoto, H. Hamada, Catal. Today 10 (1991) 57.
- [2] W. Held, A. Konig, T. Richter, L. Puppe, SAE Paper 900496 (1990).
- [3] R.A. Grinsted, H.-W. Jen, C.N. Montreuil, M.J. Rokosz, M. Shelef, Zeolites 13 (1993) 602.
- [4] J.O. Petunchi, W.K. Hall, Appl. Catal. B 3 (1994) 239.
- [5] J.-Y. Yan, G.-D. Lei, W.M.H. Sachtler, H.H. Kung, J. Catal. 43 (1996) 161.
- [6] H. Hamada, Y. Kintaichi, M. Sasaki, T. Ito, Appl. Catal. 75 (1991) L1.
- [7] N. Okazaki, T. Kohno, R. Inoue, Y. Imizu, A. Tada, Chem. Lett. (1993) 1195.
- [8] M. Kono, T. Chikahisu, T. Murayama, M. Iwamoto, SAE Paper 920091 (1992).
- [9] M. Iwamoto, N. Mizuno, Proc. Inst. Mech. Eng., Part D: J. Automobile Eng. 207 (1992) 23.
- [10] H.-W. Jen, H.S. Gandhi, in: J. Armor (Ed.), Environmental Catalysis, ACS Symposium Series, vol. 552, 1994, Chap. 5, p. 53.
- [11] T. Miyadera, Appl. Catal. B 2 (1993) 199.
- [12] T. Miyadera, K. Yoshida, Chem. Lett. (1993) 1483.
- [13] K. Masuda, K. Tsujimura, K. Shinoda, T. Kato, Appl. Catal. B 8 (1996) 33.
- [14] N. Aoyama, K. Yoshida, A. Abe, T. Miyadera, Catal. Lett. 43 (1997) 249.
- [15] K.A. Bethke, H.H. Kung, J. Catal. 172 (1997) 93.
- [16] M.J. Rokosz, A.V. Kucherov, H.-W. Jen, M. Shelef, Catal. Today 35 (1997) 65.